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7.1.1.

PATTERN PROCESSORS FOR LANGUAGE ABDUCTION

7.1.. Abduction of regular structures.

In Chapter 6 we studied a network A that could modify

~tse1f in order to learn at least some of the patterns appearing

in its environment . This was done by modifying the coupling

coefficients of A’, i.e. by changing the image processor that .il’

represents. The resulting pattern inference is of inductive type :

with the aid of observations of what happens in the environment

the network A’ will incorporate more and more of the surrounding

pattern structure .

We shall now turn to pattern processors that also carry out

inference about the structure , but in a way emphasizing the explicit

n generation of plausible hypotheses. Of course the previous network

processor can also be said to generate hypotheses. Indeed , the

changes in the geometry (see section 6.6 ) can be interpreted as

giving greater credibility .to some statements , or hypotheses ,

about the image algebra env(~2), while other statements are made to

appear less likely.. This sort of hypothesis is implicit , however ,

in contrast to what will be studied here .

Using a term coined by C.S. Peirce (see Peirce (1955), p .150—156),

we shall speak of abduction when the processor is applied to

Images from an incompletely known pattern structure in order to

generate as output plausible hypotheses concerning the structure .

Perhaps one could also call It “plausible reasoning”, adopting

Polya ’s terminology , but if so, only for the limited context that

we shall describe in the next section .
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Denote the incoming Image s by 
~~~~~~~~~~~~ 

all from some

- Image algebra 9~ , and where the images will be assumed to be

pure for the moment ; the modifications needed when they are

tieformed are far from trivial but the discussion of this will be

postponed till later.

• It should b~ pointed out that the output of the abduction

algorithm (or abduction machine) should be pattern structures , not

just individual Images for each input image . In other words we

are not looking for a single image operator that realizes a

certain task well, such as Image restoration. Instead we operate

one level of abstraction higher and the mapping is of the form

(1.1) ABDUCTION : 7x 9x Yx ... H

where fl stands for a collection L9}of pattern structures~ 
let us say

image algebras. Of course II should not be completely genera ]., the
• choice of

9’s is limited by what we know.a priori about generators , bond

relations, connection types , etc. The other extreme , that IT consists

just of’ two or a few possible .9’s is also of limited interest so that

• IT will be assumed to contain a large or even infinite set of pattern
structures.

Concerning the number of factors in the Cartesian product of

the left hand side of (1.1) we shall assume that it is finite , but

also that the abduction algorithm should be sequential, in the sense

that when another input image arrives we should only have to d3 a

moderate amount of additional computing to get a new hypothesis

over what we already computed .

More Importantly, we shall look for pattern processors that

are robust, insensitive to errors, and natural. Robustness means

• • • • - •- 
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7.1.3

• that even though the algorithm has been designed to work well for

a certain type of pattern structure , It will not break down completely

when exposed to a slightly different type . Its performance may

deteriorate but it should not cease functioning . Insensitivity to

errors means that occasional errors in the computing or in the

.inputs should not have any serious lasting effects but their

influence should die out as more images are processed. The

concept.”natural” is more difficult to make precise and what seems

a natural algorithm to one researcher may appear as artificial to

another. Anyway, we shall try to choose the algorithms in such a

way that it is conceivable that they may be implemented in real

world pattern processors . More about this later .

The reason why we emphasize these three properties as well

as the inductive , rather than the deductive , type of logic is that

we are looking for models with potential applicabllity to processors

occurring in the real world even though they may be unrealistic In

their details at present , see Vol. 1, p.266. On the other hand

we shall pay less attention to other desirable properties , such as

computational efficiency, speed of convergence , etc.

How would one go about the task of Inferring the Image

algebra YEll having been given the sequence of images Il,I2~
I
3~
...?

If II is denumerable , so that we can write

(1.2) ll={3j,9~~~~,...}

we could start testing as a hypothetical pattern structure the image 
—

H algebra 9j for I~ , and if 11E9j continue by ~~~~~~~~ As soon as we reach

• —•-. .
•• - -— —•--•~ .. _•—•.--•-v -‘—
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• 
an image ‘k for which ‘k ~~,j we go the next image algebra 9~ and

start again testing for Il E ~ 2’ then 12 E and so on. We stop

when we reach an image algebra g* E II for which no test fails.

To be able to guarantee that this leads to the correct

hypothesis 9 in a finite number of steps we need In general

access to an unlimited (potentially infinite) sequence of images

as well as some guarantee that the sequence ls”representative ”

• for the whole image algebra Y. In the following we shall let

the sequence be generated by a simple random source according to

some probability measure P over Y. We must then of course require ,

in general, that the support of P is the entire Y.

We could then try to prove theorems of convergence , saying

that the algorithm will converge to -9~ In a finite number of’ steps

with probability one . Such results can be obtained , assuming for

example that each is denumerable , but we shall not pursue this

line of thought .

t Indeed , such an algorithm can scarcely be said to be natural :

It amounts to no more than trial and error . Furthermore It does

not represent abduction as described above , since the successive

hypothesis have not been generated to be plausible with respect to

the observed sequence , they are just given by a fixed sequence.

In order to select plausible hypotheses let us rephrase the

problem In accordance with current statistical doctrine . Given a

finite section ‘1”2’~~~
’n of the sequence of images , 

think of the

true Image algebra Y as an unknown “parameter ” to be estimated .

We can then ask for the “best” estimator according to a specified

~~~~~~~~~~~~~~~~~~~~ - 
- 
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7.1.5

criterion and apply statistical estimation techniques. Our

“parameter” Y can of course be something rather different from

-• 

• 

and more complicated than what is the case in standard statistical

estimation theory , but we may still be able to solve such an

estimation problem successfully.

The resulting estimator 9~ 
can then be said to be plausible

since It utilizes the given Information as well as possible to

select the hypothesis. The naturalness of such algorithms may be

less convincing , though . Such estimation techniques may be based

on the method of maximum likelihood , on Bayesian ideas, on the

principle of least squares etc., and In order to carry out

maximization they may employ numerical schemes like Newton ’s

method , or ca~ry out matrix inversion , or use search strategies to

find a maximum . The idea that human intelligence , in particular

language learning, would be based on, say , the ability of the human

mind to .do , for example , matrix inversions is less than appealing. We

have to look elsewhere for more natural abduction algorithms.

When the images in the sequence are encountered one could

attempt Inference of 9 if the bond structure and bond relations

could be observed , since this would give information , at least

partial, about the connection type ~ and bond relation p . Then

the combinatory rules .~~~~~~~= <E ,p> could be Inferred to some degree.

Unfortunately this Is seldom possible since the internal bonds

are usually not directly observable; Chapter 3 of Volume 1 contains

many examples of this. To avoid this difficulty let us assume that

the learner has access to a teacher in addition to the pure image

sequence. The teacher ’s role Is to help the learner by telling him

— . - _---—-- - . — - - -- - -—-.- -- - - -- - _-— ---—- --- •--~~~
...——.- — • —
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7;l .6

whether other Images belong to Y or not. Then we could base

• the abduction on intentional deformations of the ‘k by applying

one or several deformations to each and ask the teacher

whether the deformed Image Is still within Y. The answers will

contain information about the internal bond s although It will be

less complete than would be the case if the whole configuration

~~reavailable for observation . Summing up, the problem has now

been reformulated as follows .

Case 7.1:1 (inference by deformations). Given a sequence

I1~
I2~

I
3~ S •• of pure images from Y and a deformation mechanism ~

use the knowledge of whether I?=~~
IkE~~~

or not to generate

hypotheses about the pattern structure .

This is still too general to be of any real help since it

does not say how to choose 2~ We have seen in Volume 1, Chapter L~, tha

there is a rich variety of deformation mechanisms and we now have

to narrow down the choice.

Recalling that we are looking for information about

= <E ,p> , it seems natural to use a ~ that leaves much of the

image unchanged and only modifies a sub—image involving only one or a

few bonds. In case
~~

Ik is not In Ywe should concentrate our attention

to the sub—image mentioned and Its connection to the rest of More

Case 7.1:2 (deforming sub—images). ~ is said to deform sub— formally :

images If, for any IEY , the image is broken up into

(1.3 ) I = IiOI~
, I

~ 
and I2EY

and

(l.4) P = I
~~

OI2

-w here I~~has the same external bond structure as I~
. 

-
- —- - - -- --—-..— -- -- - - -- -• -~~~~~~~ - - -- — --
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Note that this leaves the external bond structure

as before but not always the external bond values. The

reader may notice that we have encountered some related versions

of Case 7.1:2 before. Indeed , a jIttering deformation (see

section ~I.2 In Volume 1) restr icted to s~ = e for i=m ,m+l,. . .,n

deforms only the sub-Image containing the generators g1,g2,. . .g~ ;

m < n. The missing generator deformations (see Case 2.9, Volume 1)

also belongs to this type: it annihilates a certain sub—Image .

In order that we learn something from observing the

regularity of I~ we must ask that the deformed images are

occasionally outsldeY, i.e. 9) should be heteromorphic. Other-

wise, for automorphlc deformations , we could not hope to find

the true limitations upon the combinatory pattern structure.

For example , a shift deformation (see equation (2.1) in section ~4.2

in Volume 1) would not be powerful enough . On the other hand

Case 2.14 in Volume 1 is a good example of a deformation that would

seem a promising candidate for the abduction algorithm .

• Another way of looking at the Image relations in (1.3) and

(1.14) is in terms of congruence (see Volume 1, p. 31). If I~ is

congruent with I~~then ~~ will of course be regular, in 7. But

9) 9)

~~ Is not congruent with I~ then I may be irregular , not

always, but for some I2~ 
Therefore the teacher ’s answer to the

question whether #EY will tell us something about the congruence

relation and hence about the pattern structure. Due to the “not

always” we cannot claim with certainty to have arrived at a correct

hypothesis, we are doing induction and not deduction.

-w —— 

-- 
— _____ — - 
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7.1.8

Let us pursue this line of thought only a bit fu r the r  here .

Suppose that we tried u ttering deformations of sub—Images , we

would run into the difficulty that the similarity group S may

not be completely known to us a priori. To make sure that the

deformations be drastic enough we should look for a set S of

mappings 7-’-Y9)contalnlng 8, S ç S, but probably )arger since shifts

may not be sufficient. We wculd then select; elements of 5,

apply them to a sub—image and observe t;he regii ]nri ty or irregularity

of the deformed image . We shall return to this in more detail in the
next section.

After we have constructed an abduction algorithm the

question arises how to implement it by physical devices. Expecially

network processors like those in Chapter 6 present themselves as

natural candidates for functioning as abduction machines. This

will be attempted in sect ion 7 .3
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7.2 Abduction of some language patterns.

Based on tk- e general considerations of the last section we

shall now attempt to construct abduction algorithms when the

patterns come from some formal language . This will p.lv e a concre te

illustration of how Inference by deformations can be obtained

using Case 7.1:2.

Before deciding what type of forma l language we shall use ,

let us consider briefly the flc~w of info rma t ion when we a t tem pt

abduction . The speaker ~2 lives in an env ironmen t charac ter ized

by some image algebra env (c~) in Figure 7.2.1. A given image

IEenv(~~) can give r ise to many di f f e r en t  sen tence s be lon ging to

a language L(Gr) described by a grammar Gr. This means that an

image processor maps the image algebra env(c~) into another image

algebra , so that  t he ima ge operator “transducer ” in the figure

takes mIcroworid images into language images.

A s an example of how such an image operator may work the

reader Is referred to section 2.14 . Of course the mapping will he

one—to—many, since a given image I in env (cl) can give rise to

many syntac t ical ly corr ect sent ences , following Or , and agreeing

with I semantically .

The sentence from L (Gr) is then su bjecte d to the deformat ion

mechanism 9), the second image operator in the figure , t hat chan ges

a sub—image . The result is presented to the teacher and Is also

stored In the short term memory of ~ together with the instruction

from the teac her and t he un deform ed sentenc e . Say that the

teac her only answers ye s or no , according to the grammaticality of

_ _ _ _  I
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the sentence. The grammaticality function will be denoted gr(~~)

and is of course not known to ~2 a priori. It takes the values

YES and NO. The abduction algorithm processes these three Inputs

and saves the result in some form , yet to be specified , in the

long term memory after which the short term memory Is cleared .

As more and more sentences are processed the algorithm Is expected

to converge to a limiting grammar weakly equivalent to Or , and
- 

with performance parameters that characterize the

probability distribution over L (Gr).

In this chapter we shall study abduction of the language

L(Gr) when no semantic input Is available , so that in Figure 7.2.1

env(ç~) Is not connected to memory by the dotted lines. The

situation with semantic input from the Image algebra env (~~) is a

-t challenging research problem which will not , however , be studied

here .

In the figure we have two image operators: the transducer

with sentences from L(Gr) as output and ~ , the deformation

mechanism that was discussed briefly in the last section , whose

outputs are strings over the same terminal vocabulary as used in

its inputs. The specification of the abduction algorithm should

define the latter one In detail and we now add ress ourselves to

this question .

First we must decide what type of’ grammars to use here .

A simple but not trivial type ~s the finite state grammar and this

is what we shall use for Or; see Note:~ for further discussion as

well as for historical remarks.

~~~~~~~~~~~~~~~ r r . r — — -  • - -— - — — 
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- 
abduction algorithm

-
~~~~~~~ Figure 7.2.1

We use the same assumptions and notation as in Volume 1,

sect ions 2.14, 2.10, and 3.2. The term inal vocabular y 
~T 

contains

nT words denoted generically as x ,y,.. . or the se letters

subscripted as needed . The syntactic variables , the non—terminal s ,

• form a set VN with nN elements , denoted by i ,j,. . . or these letters
subscripted as needed. The rewriting rules are of the form

( I -
~~ xj; x EVT; i,jEV N

(2.1) ~j
(I x ; x E V T; IEV N

the latter type resulting In termination of the derivation. The number

of rewriting rides Is denoted 11r The corresponding probabilities

are denoted P1j(X) and i’1 (x) forming a m atr ix P(x) and a vector r(x)

respectively . Also

• 
_ _ _ _ _ _ _ _ _ _ _ _ _
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1 P =  Z
xEV

(2.2) ~ T

r = E r(x)
L xEVT

With the usual assum ptions the consistency que~3tiOn of the syntax—

controlled probabi lity model is automatically answered in the

affirmative , see Theorem 10.7 of Chapter 2, Volume l~ 
p.90. Hence there

exists a well—defined probability measure over ‘C(~~~
. Recall

that regular configurations here means linear str ings over VT

and that bonds take values in VN
. Of course the internal bonds

have to satisfy the bond relation p = EQUAL. The corresponding

images are “phrases ” with one In—bond and one out-bond .

A generator is a rewriting rule , as in (2.1), so that it can

be regarded as an element from VT, a word , together with its in-

and out—bonds , (i,j) or (i,F) where F represents the final state.

The initial state will be chosen as 1=1.

It is tempting to think of a generator as just a word from

VT. This is not correct since it can very well happen that on~

and the same word x appears in two different rewriting rules

i -
~ xj and I’ -

~~ Xj ’ . Therefore the mapping VT 
-

~
- 0 can be one—to—

many which will have important consequences later on .

Let x and y be fixed in VT 
and pick two arbitrary strings

U,vEV~ . If it is always true that the concatenated strings uxv and uyv

are grammatical or ungrammatical together we say that x y, they

are equivalent (or congruent). In other words

*
— 

(2.3) x E y ~~ gr(uxv) = gr(uyv), Vu ,vEV T 

- - I  - - - - - -—
.
~~

• ‘- • -:. - ~~~ 
~~

- --.* 
• •- -‘ .•
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This equivalence partitions VT 
Into equivalence classes. Note

that equivalence in (2.3) demands that the right hand side hold

for all u,v. Hence an infinite number of tests would be required

since V is infinite. Testing it for a single case (u,v) or a

finite number of cases does not suffice. Nevertheless one feels

that if the relation holds for many (u,v)—c ombinations then x

and y are likely to be equivalent , In some sense that has not yet

been made precise.

We shall need the following simple statement.

Lemma 2.1. In order that x y It is necessary and sufficient that

for any generator of the form i -~xj there exist one of the form

i+yj and vice versa.

-

~~~~~~ 

. Proof : Consider two words x and y, and strings uxv and uyv . If

for any generator I + xj there is one I -* yJ it is clear that

gr(uxv ) = gr(uyv), and since this holds for any u,vEV~, It follows

x y.

On the other hand , let us choose x and y such that y.

If uxy is grammatical and u takes the initial state into the

state , x takes I into j, and v takes j into F, then , in order that

uyv also be grammatical it is necessary that the internal bonds fit.

Hence triere must be a rewritIng rule of the form I -
~~ 

yi and the

proof Is complete.

To emphasize the equivalence property we choose as our similarity

transformations the set of all those permutation s of generators t;hat

leave the equivalence unchanged , so that if’ g = I -
~ xj then

sg = I -
~ x ’j with x sonic x ’. This det;ermines the generator classes

Ga invariant with respect to S. - 

•~~~~~~~~~~~~~~~~~~~~~~ • 5.~~~~~~~~~~~~~~~
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Of course S Is unknown ab initio and should be learnt during

the abduction process. We will start with some set S of transforma-

tions of the images , where S need not be a group. As our first

task, to be carried out in sections 7.3— 7 .14, we shall take the

determination of the (unknown) word classes.

To make the follow ing as concrete as possible we shall use

a “test grammar” . Of course we could have chosen one using a

vocabulary consisting of abstract symbols since we are not

concerned with natural language processing here . For didactic

reasons, however , we have instead selected one generating English—

H like strings so that the output is easier to read. Since the

semantic background has been left out it will be necessary to

“fudge” the grammar to avoid completely meaningless sentences from

being grammatical.

The grammar has 
~T 

= 52 including the punctuation mark “.“

and a list of the terminal vocabulary is given in Table 2.1.

These 52 “words” are arranged in 23 word classes denoted by, for

example , DET for determines , NH for human norm and so on.

-S
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- Class Code Words

_ 1 l~-‘ 2 i J  DET THE
3 1 SOME

14 2~~ *TALL
5 2 J~ 

AJH CLEVER
6 2 1 SHORT

• 7 2) YOUNG

8 3 ~ *SPOTTED
9 3 J AJA FRISKY

10 14 *FINE
11 14 j AJ1N NEW
12 14 VALUABLE

1 3 - 5 *BLUE
114 5 AJ2N ORAN GE
15 5 GREEN

16 6 ’
I *MAN

17 6 L N H  BOY
18 6 1 WOMAN
19 6J GIRL

• 20 7~~~ *CAT
21 7 ~, NA KITTEN
22 - 7 1  DOG
23 7J PUPPY

214 8 ~ *TABLE
25 8 3 NN CHAIR

• 26 8 DESK

27 9 ‘I
28 9 3 A U X  WAS

• 29 10 ~ *SEEN
30 10 3 VP HURT
31 10 . HELPED

- 
- 

32 11 1 *LIKES
33 11 J VT DISLIKES

314 12 1 *SPEAKS
35 12 J VI SINGS

36 13 1 *AND
37 13 1 CONJ WHILE

38 114 ~ *HE
39 114 J PRH SHE

140 15 PRN *IT

141 16 1 *MARY

~42 16 J PNH JOHN

113 17 ~ *TOUKA
1414 17 J PNA ROVER

145 18 ~ ~IMMENSELY14 6 18 1 ADV VIOLENTLY

-‘
~~~~~~~~~~~~~~~~ 

— - .‘~~~~~~ r ~~ - 4
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14 7 19 1 *SAyS
148 19 j VC CLJ~IMS
149 20 REL *TIIAT

50 21 BY *BY
51 22 NOT *NO’II

52 23 DOT
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The test grammar Gr has 19 states Including the final one

F=19 as in Figure 2.1. ThIs correspond s to the generators listed

in Table 2.2, where for example 1 -
~ PNA ,7 really represents two

re—writing rules since the word class PNA contains two words.

In all we have 87 rewriting rules.

A program generates sentence s from L(Gr) as described In

section 3.2 of Volume 1. The performance will of course depend

upon the probabilities associated with the generators. Many of

the sentences are quite reasonable , such as lIE IS HELPED BY A BOY ,

or JOHN SPEAKS , or THE DESK IS NOT BLUE. Some are a bit doubtful ,

such as JOHN CLAIMS THAT JOHN SINGS, or SOME VALUABLE TABLE IS

NOT GREEN . More seldom one gets a very strange sentence , for

example , HE CLAIMS THAT THE MAN CLAIMS THAT A WOMAN IS HELPED BY

THE DOG , or SHE VIOLENTLY LIKES THE BOY WHILE HE SPEAKS . It may

also be ment ioned that some perfectly reasonable looking English

sentences over the given terminal vocabulary are not accepted by

Gr, for example ROVER LIKES THE GIRL. For our purpose the grammar

represents a sufficiently difficult task however .

Consider now the four generators of the form 11 -
~ NH ,l2.

The words in NH are certainly equivalent to each other. Similarly

the four generators of type 11 + NA ,12 use the words NA which are

equivalent to each other. All these eight generators go from

state 11 to 12 and one may be tempted to believe that the elements

in NA are equivalent to the elements in NI!. This Is not the case

however , since Lemma 2.1 tells us that in order that this hold we

— must have , for example , for the genera tors 2 -* NH ,6 generators of

the form 2 -‘ NA ,6. The latter ones do not appear In Gr~ so that

L~~~~~~~~~~~~~~~~~~~I
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Table 2.2

generator number generator

1 1 -
~~ PRr - i , 8

2,3 1 PNA ,7
14 ,5 , 6 1 -

~ DET , 2
7, 8 1 -~ PR U ,6
9,10 1 -

~ PN II ,6
11,12,13,114 2 -

~ AJH ,3
15,16 2 -

~ A JA ,14
17, 18 , 19 2 -

~ AJ1N ,5
20,21,22,23 2 -

~~ NH ,6
214,25,26,27 2 -‘- NA ,7
28 , 2 9 , 30  2 -

~ l’111, 8

31,32,33 ,311 3 -- NI I ,6
3 5 , 3 6 , 3 7 , 3 8  ~4 -

~ NA ,7

39,140,-Il l 5 -
~ NN ,8

142,113 6 -
~ VT ,9

1414 , 145 6 -
~ VI ,l2

146 , 147 6 -
~ A UX ,13

148 , 149 6 ADV ,l7
50,51 6 -

~ VC ,18

52,53 7 -‘ A UX ,13
514 ,55 8 -

~ AUX ,10
56 , 5 7 , 5 8  9 -

~ DET ,ll
59,60,61 10 -

~ AJ2N,12
62 10 -

~~ NOT ,l6
63, 6 14 , 65, 66 11 -

~ NH ,l2
67,68 ,69,70 11 -

~ NA ,l2

71,72 12 -
~~ CON J ,l

-
‘ 

- 

13 12 -
~

714,75,76 13 -
~ VP ,11l

77 - 13 ~ NOT ,15
78 l4 -

~ BY ,9
79, 80,81 15 -

~
- VP ,l~l

— 82 , 83 , 814 16 -
~ A J2 N ,12

85, 86 17 -
~ VT ,9

87 18 -p REL ,l

- r r  - - — - - - - 
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~~~~~~~~ 

“
~~
‘ the equivalence between NA and NI! does not hol d , which will

introduce an essential difficulty which will be studied In the
next section .

I
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t’’ 7 .3 .  Word class partitioning. A crucial part of the abduction

algorithm tries to find the partition of V~ into classes of

equivalent words. If this can be achieved we have reduced the

~~~ 
- “combinatorial size” of the task considerably since we can then

operate on the level of pre—terminals rather than terminals .

In the test grammar the number is then reduced from 52 to 23.

In natural language it is likely that the reduction would be even

greater.

But this is not the only reason why we shall pay so much

attention. We shall see later that the partItioning problem

presents the main mathematical difficulty: once it has been solved

- the full abduction problem for finite state grammars can be

- -~~ obtained by a similar construction. Therefore we shall examine

- - this sub—problem in considerable detail.

Let us look at what is a real obstacle preventing us from

using one of the standard algorithms . Consider two words X , Y E V T

- and ask whether they are equivalent or not. For this purpose we - -

-‘ assume that  some test procedure has been arr ive d at that  will be

- applied to a given sentence I generated according to the syntax—

controlled probability model .

As describe in the previous section the sentence I will be

L deformed by �~ into I by replacing one or several occurrences

of x In I by y. If x does not occur in I no change Is made. We

will have to describe exactly how this replacement Is done when

we analyze ~~ mathematically, but for the mom ent it will be enough

-
~~ to point out tha t the al gor ithm coul d not poss ibl y be com ple te ly

correct so that we have to Introduce the probabilities of an error .

-T  
- -- • -

-
~~~~~ -- - - 
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c = the probability that the test says yes although

J x 4 y
(3 . 1) ~ = the probability that the test says no although

x ! y.

It is clear that c > 0 since It can happen with positive probability

that x y but that x can be substituted for y in some sentences

without destroying their grammaticality, see the last section.

The second probability, S , will be zero though., since If x E y

then any substitution x ~- y will leave the sentence grammatical.

However , if we allow for an imperfec.t teacher , or , what Is the

same thing, that the learner lives In an imperfect linguistic

environment then we should also allow S to be positive.

‘ (“,‘ To calculate c we must specify the testing algorithm

precisely and we present one Instance of such a calculation.

For variations on the testing algorithm the expression will not

hold exactly although it may indicate the order of magnitude of

e. Say that we pick the first occurrence of x in I, if any ,  and

replace it by y. To find for x and y fixed , we can reason as

follows .

The probability of generating a sentence with s in the f irst

position and of length L is

(3.2) Zp11 (x)p 1 ~ 
(x2).. .p1 ~ 

(X
L l )t ’i (X

L
)

1 1 2  L— 2 L—1 L—l

summed over x 2,x3,.. .XLEVT and over the l’ s and interpreted as

r1(x) if L 1 .  Similarly, to get a string with the first occurrence

(If any)  of x in the second posi t ion is

- 5—-- - 
-
~ 

---5--- - -—
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I 
~

‘

~~~~~

‘ (3.3) Ep~1 (x 1)p1 ~ 
(x)p 1 ~ 

Cx ) .  . .p1 ~ 
(XL 1)r

1 (X
L
)

1 1 2 2 3 L—2 L—l L—1

summed over X1EV T_X , x2,. ..XLEV T and over the I’
s, an d we can

do this for any position up to L.

Define

x
1 If there is a re wr it ing ru le I -~ j

I t11 (x ) =
• I ~~ 0 else

( 3 . 1l ) . <  x
1 if there  is a rewr it ing rul e i -p F

=

else

In order tha t the deforme d Image I~~EYwe must have when

the first occurrance of x Is the kth position

(3 .5) 1 = t11 (x 1)t 1 1 (x 2 ) .  . .t l j ( Y ) tj j (x k+l ) . . .  

(XL)1L-2~ L-l 
- 1L—l

for some i—sequence. The event that I contains an x and I EY

will then have a probability that can be obtained from the —

expressions in (3.2).-(3.3) by including the (3.5) right handside

as a Jack in the terms and summing as indicated but else over

L=l,2,3 If we do this we get

(3.6) 
~~~ 

= r1(x)T1(y) +

+ E Ep (x)t1 ( y ) p 1 ~ 
(x 2 ) t . (x 2) .

L=2 lii 1 2

Pl i l
(XL_l )t

J 2j l
Cx L l )r

iL l
(x
L)TJ L 1

(x L)

_ _ _-

~ 
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-
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+ ~ Ep 11 (x
1)p1 ~ 

( x ) t 1 ( y ) .  . .p1 ~ 
( X L J )t  (X L ~~L=3 1 1 2 l~2 L-2 L-l - 1L—21L-1

_ _ _  

r~ (X
L
)T
j (X

L
)

L-1 L-l

+ E E . . .

where the second summation signs in each term indicate summation

over l’s and i’ s an d over x ’s but only for x Iii the second

Sum , x,- and x ~ x in the thi rd  sum , and so on. The expressionI
- 

can be written more conveniently IntroducIng the arra ys

P = 
~ P(~~) = P — P(x)x

- N = (~: P ay (
~~)t~~~(~~) }

-

~~~~~ (3.7)
- N = {E r a (

~~
)
~r~~

(
~~

) ) , n = (r ( x ) r ( y ) }

- 
S(x , y)  = (P~~ (x)t~~ (Y)J, ci col( 1,0,...O)

-4

We can then write ( 3 . 6 )  as
I

(3.8) p
~ 

= dTn + ~ dTs(x , y ) M L_2
N + d Tp n + E d Tp s(x ,y ) M L_ 3 N

• L=2 X L=3 X

- 

+dTp2n + ~ dTp2S(x , y ) M ~~~ N +
L=11

This gives us

~~~~ ~xy 
= dTn + dTScx ,y)cI_nr 1u+d Tp~ n+d rr

p~3(~~,y)(1_fly1~

+dTP2 + d PP~S(x ,y) (I_ n)
_ l

N +

dT(I÷ .p~+.p~+. . .) f l  + d T[I÷p ~ p~ + . . .]S(x ,y)(I-n)~~~ =

~~~~~ 

= dT(I_ Px )
_u
[n+S(x ,y)(I_n )~~N].

-5
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Note tha t S (x ,y) and N are linear operatorG represented by

3— and 14—dimensional arrays respectively and t h e second Identity

operator I stands for the dientlty as indexed by four subscripts

I =

On the other hand the prbabIlity that a sentence from the

syntax—controlled probability model will not contain any instance

of the word x Is

(3.10) dTrx + 
L=2 

1p 11 (x i )pi j
(x 2).. .Pi i (x I l )r i (X L)

• summed over x1,x2,. . .x~ ~ x, or using (3.7)

• (3.11) dTr + ~ dTP’~~
lr = dT(I_P )~~ r

X L=2 X X X X

with r
~ 

= r—r(x).

The is the conditIonal probability that x ~ 
y is not

detected if x occurs In the sentence and is replaced by y. Hence

(3.12) = _ _ _ _ _ _ _ _

The appearance of the factor (i—n)~~ In (3.9) would seem tc

make this expression difficult to compute directly. It is possible

to give a direct and help ful inter pretat ion of t he matrix

Q = (I—n )~~N. Consider Figure 3.1 which represents the generation

of the two strings nxv and nyv under consideration. Returning to

( 3 .6 )  it is not diff icult to see that the entry ~~~ of Q means the

probability of generating a string starting In state y and ending

in F such that the same terminal ltring also leads from state

6 to F. Q need not be symmetric .
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The q ’s must sat isfy the recurs ion

H
U

x~~~~~~~~~~~~~~~~~~~
T

~~~~~~~‘v ~~~~~~~~~~~~~~~~~
I v

l

o,

_ _ _~~~~~

Figure 3.1

(3.13) q1j 
= + ~ N~~~~~~8 ~~~~~

which can also be seen , of course , from the algebraic definition

of Q . What is more important , however , is to realize that q
11

must be zero if there is no word ~ that exits f rom both i and j.

In ot her wor ds q11 can be positive only if there are rewriting

rules I -
~~ k, J -~

This implies that Q will be an extremely sparse matrix where

we can a priori fill in lots of zeroes Just by ]•ooking at the

diagram . Further , for a main diagonal element , this value

means Just the probability of generating a strlnr- leading from

state I to F. According to the assumptions tha L we have adopted

this probability will automatically be equal to one.

- - •--~~~~
5---5--— -— •~~~• L  
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Introduce a relation E between states and with iEj If

~ 
VT and k, such that 1 3 k , j + 2..

Let E* be the transitive closure of H so that E* Is an

equivalence relation. Then E* partitions the set of states into

classes and the Q—matr ix be partitioned into block structure ,

with the rows and columns subscripts of the blocks corresponding

to the classes induced by E* . The computational problem associated

with (3.12) Is therefore manageable.

Combining (3.11) with (3.9) we get the probability °xy that

the deformation d (x + y) does not detect tha t x ~ 
y as

(3.111) 
~~~ 

= d T(I_P~)~~ [r~+n+S(x ,y)Q].

Repeating this deformat ion on succe ss ive sentence s we can the refore

expect to have to repeat this a number of time :~, with the number

of the order 1/1_e
~~

. For large values of e~~ considerable testing

will be needed but we shall try to reduce this by improving the

form of the partitioning algorithms .

It was observed empirically when the ~ described was

simulated , that the selection of x from I cou ld be done be tter .

Nechanical criteria as selecting the f i r s t  occurrence of x , where

x itself Is picked at random from VT is wasteful . The same holds

for selecting one at random of the (possible) nccurrences of x in I.

Instead we should select x and y in such a way that we test

critical choices , where we have reason to really 3uspect that x / y,

and not wast our effort by testing x and y often if we already

believe that x y. This idea was Implemented as follows.

~

--- - _ _ _  _

~
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Partitioning Algorithm: Step 1. InitIalize by creating a single

class consisting of all VT and choose one word as the prototype

of the class.

• Step 2. The algorithm LISTEN produces a sentence from

L(Gr) accord ing to the (unknown) syntax controlled probability

model.

Step 3. The algorithm ATTENTION (s ee be low) se lec ts an

x C I.

Step I4~ The algorithm SPEAK produces the deformed string

I = d(x y)I with y equal to the prototype of the class x

belongs to currently. The grammaticality of is obtained .

Go to Step 6 If gr(I~ ) = FALSE.

Step 5. If gr (P) = TRUE the algorithm STRENGTHEN Increases

the plausibility of our belief that x y by moving x closer to

y in this class ~f poss ible. In other words the positions of x

and the elemen ’ n e x t  closer to y are permuted unless the next

element; happens to L ? ~z. Go to  Step 2 (or s t o p ) .

Ste.~~~~ Nove x to the e r h of ‘he next class if there is

- one, elze go to Step 7, and go to Step 11.

Step 7. Create a new class with x as its single element

and ototype.

The lists represent~1nr- the ~- r - -vis1 .onal c lo s s ’s can be

visua l ized  as in F I r ” i r ’ e  3 . 2  w~ ’-r e  ~, r i r al : a e vem- ’nt ; s of words have

been In dir ec ted .

The al go r i t h m  ATT~ UTiON Is Intended to avoid wasteful testing

and c o n c e nt r a t ~ the  abd -~~ t i on  process on h y p o t h e s e s  t h a t  seem

u n c er t ~~In a t  the rn m-mt . It  eonslde rs  the  set of words In the

- •_ — —-- --_ -—- --
~~~~~~~~~

- - -

- - -- - - - -- - •  - — - -  —---•—- —- -•  -- -
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current class and Is convenient to think of them as a list ordered

from left , with the prototype far left, to right . For each word

measure i ts  d is tance  from the le f tmost  element , the  prototype .

ATTENTION selects one word at random but not with u n i f o r m

distribution but with probabilities monoton ically increasing with

the distance.

The algorithm STRENGTHEN upda tes  our cu r ren t  be l ie f  that

x E y by moving x le f twa rds  Into  a pos i t ion  assoc ia ted  with a

higher p laus ib i l i ty  of being equivalent  to the p r o t o t y p e .

Theorem 3.1. The a lgor i thm produces part itions that conv erge

with  probabi l i ty  in a f inite number of ste ps one to the true

partition.

Proof: Consider the sequence of sentences produced by LISTEN ,

and denote by c t the  number of c lasses

established after t sentences have been heard . Since ct is non—

decreasing in t arid bounded by 
~T 

j~~ converges to some limiting

random variable c .  If c Is less than the t rue  num ber of classes

there exists at least one word , say x , not equivalent to any of
• the c~ prototypes. Let E be the probability given the cm

prototypes , that a sentence Is produced that conta ins x , that x is

selected arid tested against each prototype and that these tests

fail. Then P(E) Is positive , although perhaps quite small. If E

occurs then a new class will be established by Step 7 in the

algorithm . Hence this will happen with probability one for the

Infinite sequence of sentences produced so that Cm must be equal

to the truer number of classes. The way the prototypes have been

selected they are all mutually non—equivalent . Therefore , in the

~~~~~~~~~~
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PROTO1 x 11 x
12J ::: x 1~1_ 1  x 1~

[~~ OTO 2 ~ 2 l~~~~~~~ 2 ::: x2 n2

PROTO 3 x3l ::: X
3~~~ 2 

x 3~~~~1 x 3~

PROTOI x~~ 
- 
x~2j : : :]x 2.~ 2._I

• 
•

~j~ure 3.2

probability one, they represent each of the  true equivalence classes.

The movements caused by the algorithm in Figure 3.2 Is

par t ly  wi th in  classes and partly betwe en c lasses . The f irst ty pe

of movement does not i n f l uence  the partition (directly). The

second type moves a word downwards to another class or to a new

class. This Implies that once rim 
has been reached the algorithm

only moves words away from classes to w h i c h  t hey  do not belong.

A word x will not stay for more than a f inite number of situat ions

In the wrong class. Hence the partitions converge after a finite

number of steps to the true partition.

The theorem guarantees  that this pattern processor is

Consis tent  but it does not say anything about the speed of the

convergence.  To learn about  t h i s  the  algorit hm has been imp lemented ,

ac tua l ly  in several quite different versions , and executed on the

computer .

For the test grammar of section 7.2 words a classified

rapidly into equiva lence  classes du r ing  the  early part of execution.

- - -5 - --—~~~~~~~- — - ~~~~~~~~~~-- -— -—~~~~~~~~ •- - -- - -- - - — —- —-•- ~~~~~~~~~~~ —-~~~~~~ - - - --- 5 - - - - -  —~~~
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The learning rate then slows down considerably. For a t y p i c a l

run after 150—200 sentences have been heard and processed most

of the 23 equivalence classes have been established with a

couple of words misc lass i f i ed  out  of the 52.

Graphical ly  th i s  looks l ike Figure 3 .3  showIng the number

of words c lass i f ied  correct ly  with number of sentences as abscissas ,

and Figure 3. -li which  shows number of di scovere d wor d classes .

In some respect  th i s  abduc t i on  al gor it hm sat isf ies t he

requirements of section 7.1.  Whether  it Is “ n a t u r a l”  or not may

be answered differently by different persons but at least it

appears more natural than some alternative ones .  It is fairly

• fast, although we do not claim any optiniality . It Is insensitive

to the c—error which plays a fundamental role in plausibility
;~~ inference.

If we change the pattern structure , how ever , the algor ithm

appears less attractive. More precisely, if the  answer  to the

• learner as to the value of gr ( #) is not always correct so that

the learner will be told that I~~~9 although I~ EY we have

• 6 > 0 , see last sec t ion .

Sens t inlz ing  the a lgor i thm it can then be seen that Ste p 7

may be taken when x is actually equivalent to the prototy pe of

one of the provisional equivalence c lasses.  Henc e It can happen

wi th  posi t ive probability that too many provisional equivalence

classes are set up.  Since the  al gor ithm has no s tep involv ing

coalescence of equiva lence  this mistake will never be corrected .

Therefore the a lgor i thm is not r obus t  to small  (6  sma l l)
-5

changes In the pattern structure of the linguistic environment of

~~~~~~ 
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the learner . The question arises how to compensate for this.

One possibility is to Include a coalescing step into the

algorithm to be executed only occasionally. Althou gh it may be

possible to do this it will not be attempted since it would

destroy the elegant simplicity of the algorithm . Instead a very

different sort of algorithm will be examined .
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Note s

The approach in this section was strongly Influenced by

Ideas due to the late A. ~pa~ek on deduction—Induction under

imperfect conditions. An example of such ideas can be found in
- V v

Spacek (1960). Unfortunately Spacek was not given the opportunity

to complete his innovative thinking . His published work on this

topic deserves to be better known .

Pattern inference in general , including pattern abduction ,

can be viewed as inductive behavior , just as J. Neyman (1950 ,1966 )

suggested that statistical inference can be described by this

term . See also sectionl.l in the current volume .

There is also some relation to work in artificial intelligence:

mechanization of proofs , heuristic programs , etc .  The reader could

consult e.g. Hunt (1975), see Chapters IX to XII in particular ,

and the bibliography .

A particularly interesting attempt to formalize the induction

process Is due to R. Solomonoff , see Solomorioff (1961-la,b).
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Notes

7.2. GrammatIcal inference in general is what grammar ians have

been doing for thousands of years. Formal grammatical inference

is of more recent origin but even so the literature Is already

voluminous. Most of it is only marginally related to the

abduction study in this section. The interested reader may be

referred to Hunt (1975), Chap ter VII, Fu ( ) ,  Chapter

where many more references can be found . See also Fatal (1972),

Maryanski (19714).

More relevant to this section is the early discussion in

MIller—Chomsky (1957) which suggests substitution as a natural

principle on which to base the algorithm . Another important

reference is Solomonoff ( ) wh ich is bas ed on the

theorem . It is not known to the author if these early attemp ts

were followed up by deta iled analy sis of ro bustness error

sensitivity etc.

The material in sections 7.2— is based on a study begun

in 197 as a result of a discussion between the author and
- 

L. Cooper, W. Freiberger, and H. Kucera. Some preliminary results

were reported in Grenander ( ) but the algorithms were not

analyzed in sufficient detail. A more complete analysis was

presented in Shrler (1977) together with mathematical experiments

illustrating the strengths and weaknesses of one particular

abduct ion scheme .

The choice of finite state languages is very restrictive.

-
— It should be remarked here that our goal Is not to study abduction

_______  — -.--~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - —--5 - ——- 5—-— -
—
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of natural language , but to see how abduction can be organized in

a concrete setting and what are the mathemat ical difficulties

that one will then encounter , e.g. the determination of c and 6 ,

robustness , convergence.

When choosing similarity transformations one has to decide

what are the relevant properties that we want to concentrate on-,

what sort of “sameness ” are we interested in at the moment .

Often we will have to operate with more than one S. In the

present sect ion we want to exam ine the v a l i di t y  of the  bond s wh i c h

leads to the definition used.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _


